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Abstract—Text effects are combinations of visual elements such as outlines, colors and textures of text, which can dramatically

improve its artistry. Although text effects are extensively utilized in the design industry, they are usually created by human experts due to

their extreme complexity; this is laborious and not practical for normal users. In recent years, some efforts have been made toward

automatic text effect transfer; however, the lack of data limits the capabilities of transfer models. To address this problem, we introduce

a new text effects dataset, TE141K,1 with 141,081 text effect/glyph pairs in total. Our dataset consists of 152 professionally designed

text effects rendered on glyphs, including English letters, Chinese characters, and Arabic numerals. To the best of our knowledge, this

is the largest dataset for text effect transfer to date. Based on this dataset, we propose a baseline approach called text effect transfer

GAN (TET-GAN), which supports the transfer of all 152 styles in one model and can efficiently extend to new styles. Finally, we conduct

a comprehensive comparison in which 14 style transfer models are benchmarked. Experimental results demonstrate the superiority of

TET-GAN both qualitatively and quantitatively and indicate that our dataset is effective and challenging.

Index Terms—Text effects, style transfer, deep neural network, large-scale dataset, model benchmarking
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1 INTRODUCTION

TEXT effects are additional style features for text, such as
colors, outlines, shadows, stereoscopic effects, glows

and textures. Rendering text in the style specified by the
example text effects is referred to as text effect transfer.
Applying visual effects to text is very common and impor-
tant in graphic design. However, manually rendering text
effects is labor intensive and requires great skill beyond the
abilities of normal users. In this work, we introduce a large-
scale text effect dataset to benchmark existing style transfer
models on automatic text effect rendering and further pro-
pose a novel feature disentanglement neural network that
can synthesize high-quality text effects on arbitrary glyphs.

Text effect transfer is a subtopic of general image style
transfer. General image style transfer has been extensively
studied in recent years. Based on style representation, it can
be categorized into global and local methods. Global meth-
ods [1], [2], [3], [4], [5] represent styles as global statistics of
image features and transfer styles by matching global feature
distributions between the style image and the generated
image. The most famous one is the pioneering neural style
transfer [1], which exploits deep neural features and repre-
sents styles as Gram matrices [6]. However, the global repre-
sentation of general styles does not apply to text effects. Text

effects are highly structured along the glyph and cannot be
simply characterized in terms of the mean, variance or other
global statistics [2], [3], [4], [5] of the texture features. Instead,
the text effects should be learned with the corresponding
glyphs.

On the other hand, local methods [7], [8], [9] represent
styles as local patches, and style transfer is essentially tex-
ture rearrangement, which seems to be more suitable for
text effects than global statistics. In fact, the recent work
of [9], which is the first study of text effect transfer, is a local
method; textures are rearranged to correlated positions on
text skeletons. However, it is difficult for local methods to
preserve global style consistency. In addition, the patch-
matching procedure of these methods usually suffers from
a high computational complexity.

To handle a particular style, researchers have explored
modeling styles from data rather than using general statistics
or patches, which refers to image-to-image translation [10].
Early attempts [10], [11] trained generative adversarial net-
works (GANs) to map images from two domains; this tech-
nique is limited to only two styles. StarGAN [12] employs
one-hot vectors to handle multiple predefined styles but
requires expensive data collection and retraining to handle
new styles. Despite these limitations, image-to-image trans-
lationmethods have shown great success in generating vivid
styles of building facades, street views, shoes, handbags,
etc., from the corresponding datasets [13], [14], [15], [16].
However, the style of text effects is less well explored in this
area due to the lack of related datasets.

An attempt to solve this problem uses MC-GAN [17], for
which a small-scale dataset containing 910 images (35 text
effects rendered on 26 capital letters) is collected. The
authors [17] combined font transfer and text effect transfer
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using two successive subnetworks and trained them end-to-
end using synthetic font data and the collected text effect
dataset. The data-driven model shows good performance on
this dataset. However, the limited size of the dataset can
only support the model in handling capital letters with a
small resolution of 64� 64, which is far from meeting actual
needs. Therefore, it is necessary to construct a large-scale
dataset that has adequate style and glyph diversity for data-
driven text effect transfer model design and benchmarking.

To address this practical issue, we develop TE141K, a
large-scale dataset with 141,081 text effect/glyph pairs for
data-driven text effect transfer, as shown in Fig. 1. TE141K
contains 152 different kinds of professionally designed text
effects collected from the Internet. Each style is rendered on
a variety of glyphs, including English letters, Chinese char-
acters, Japanese kana, and Arabic numerals, to form the
style images. Besides these rendered in-the-wild styles, we
design a simple yet effective style augmentation method [18]
to obtain infinite synthetic styles, which can serve as a sup-
plement to TE141K to improve the robustness of transfer
models. Regarding content images, we further preprocess
them so that they can provide more spatial information on
glyphs, which makes it easier for the network to capture the
spatial relationship between the glyph and the text effects.

Based on the large-scale dataset, we propose a novel
approach for text effect transfer with two distinctive aspects.
First, we develop a novel TET-GAN built upon encoder-
decoder architectures. The encoders are trained to disentangle
content and style features in the text effect images, while the
decoders are trained to reconstruct features back to images.
TET-GAN performs two functions, stylization and destyliza-
tion, as shown in Fig. 2. Stylization is implemented by recom-
bining the disentangled content and style features, while
destylization is implemented solely by decoding content fea-
tures. The task of destylization guides the network to pre-
cisely extract the content feature, which in turn helps the
network better capture its spatial relationship with the style
feature in the task of stylization. Through feature disentangle-
ment, our network can simultaneously support hundreds of
distinct styles,whereas traditional image-to-image translation
methods [10] only deal with two styles. Second, we propose a
self-stylization training scheme for one-reference style trans-
fer. Leveraging the knowledge learned from our dataset, the
network only needs to be finetuned on one reference example,
and then it can render the new user-specified style on any
glyph, providingmuchmore flexibility than StarGAN [12].

Compared with our previous work [18], we expand
TET-GAN to joint font style and text effect transfer, which

achieves better style consistency between the output and
the reference style. We further explore semisupervised text
effect transfer to improve the model’s generalization. In
addition, we present analyses of the features extracted by
TET-GAN to validate the disentanglement of styles and
content, which helps clarify the working mechanism of the
model. Finally, in addition to our enclosed conference
paper, we focus on the construction and analysis of the
new large-scale dataset TE141K and conduct more compre-
hensive and in-depth experiments for model benchmark-
ing, including 1) a new dataset 160 percent larger than the
old one [18] in terms of styles and glyphs, 2) objective and
subjective quantitative evaluations over fourteen style
transfer models on three text effect transfer tasks, and 3)
analyses on the performance-influencing factors of text
effect transfer. In summary, our contributions are
threefold:

� We introduce a large dataset named TE141K contain-
ing thousands of professionally designed text effect
images, which we believe can be useful for the
research areas of text effect transfer, multidomain
transfer, image-to-image translation, etc.

� We propose a novel TET-GAN to disentangle and
recombine glyph features and style features for text
effect transfer. The explicit content and style repre-
sentations enable effective stylization and destyliza-
tion on multiple text effects. A novel self-stylization
training scheme for style extension is further pro-
posed to improve the flexibility of the network.

� We provide a comprehensive benchmark for our
method and state-of-the-art methods, which validates
the challenges of the proposed dataset and the superi-
ority of our feature disentanglementmodel.

Fig. 1. Representative text effects in TE141K. Text styles are grouped into three subsets based on glyph type, including TE141K-E (English alphabet
subset, 67 styles), TE141K-C (Chinese character subset, 65 styles), and TE141K-S (symbol and other language subset, 20 styles).

Fig. 2. Our TET-GAN implements two functions: destylization for remov-
ing style features from the text and stylization for transferring the visual
effects from highly stylized text onto other glyphs.
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The rest of this paper is organized as follows. Section 2
presents our new dataset. In Section 3, we review represen-
tative style transfer models for benchmarking. In Section 4,
the details of the proposed TET-GAN for text effect transfer
are presented. Section 5 benchmarks the proposed method
and the state-of-the-art style transfer models. Finally, we
conclude our work in Section 6.

2 A LARGE-SCALE DATASET FOR TEXT EFFECT

TRANSFER

In this section, we will introduce the details of TE141K and
analyze its data distribution.

2.1 Data Collection

We built a dataset with the help of automation tools in
Adobe Photoshop. Specifically, we first collected PSD files
of text effects released by several text effect websites and
PSD files we created by following tutorials on these web-
sites. Then, we used batch tools and scripts to automatically
replace the glyphs and produce approximately one thou-
sand text effect images for each PSD file. There are also two
text effects kindly provided by Yang et al. [9], adding up to
152 different kinds of text styles. Finally, we obtained
141,081 text effect images with a resolution of 320� 320
and their corresponding glyph images to form TE141K.
Based on glyph types, we divide TE141K into three subsets,
where text styles are different in different subsets. Fig. 1
and Table 1 show an overview of these three subsets,
including:

� TE141K-E. This subset contains 67 styles (59,280
image pairs, 988 glyphs per style), where all glyphs
are English alphabets, making text effects easier to
transfer compared to the other two subsets. This sub-
set serves as a baseline to explore multistyle transfer.

� TE141K-C. This subset contains 65 styles (54,405 image
pairs, 837 glyphs per style). The glyphs for training are
all Chinese characters, while the glyphs for testing
contain Chinese characters, English alphabets and
Arabic numerals. This subset can be used to test the
glyph generalization ability of the transfermodel.

� TE141K-S. This subset contains 20 styles (20,480 image
pairs, 1,024 glyphs per style). The glyphs are special
symbols and letters of common languages other than
Chinese and English. In this paper, we use this subset
for one-reference training to test the flexibility (effi-
ciency of new style extension) of the transfermodel.

For each subset and each kind of text effect, we use appro-
ximately 87 percent of the images for training and 13 percent
for testing.

2.2 Data Processing

Distribution-Aware Text Image Preprocessing. As reported
in [9], the spatial distribution of the texture in text effects is
highly related to its distance from the glyph, forming an
effective prior for text effect transfer. To leverage this prior,
we propose a distribution-aware text image preprocessing
to directly feed models trained on TE141K with distance
cues. As shown in Fig. 3, we extend the raw text image from
one channel to three channels. The R channel is the original
text image, while the G channel and B channel are distance
maps where the value of each pixel is its distance to the
background black region and the foreground white glyph,
respectively. Another advantage of the preprocessing is that
our three-channel text images have much fewer saturated
areas than the original ones, which greatly facilitates the
extraction of valid features.

Distribution-Aware Text Effect Augmentation. In addition to
the text images, we further propose the distribution-aware
augmentation of the text effect images. The key idea is to
augment our training data by generating random text
effects based on the pixel distance from the glyph. Specifi-
cally, we first establish a random colormap for each of the R
and G channels, which maps each distance value to a corre-
sponding color. Then, we use the colormaps of the R and G
channels to tint the background black region and the fore-
ground white glyph in the text image separately. Figs. 3c,
3d, and 3e show examples of the randomly generated text
effect images. With colors that reflect structural distribution,
these images can effectively guide transfer models to iden-
tify the spatial relationship between the text effects and the
glyphs. In addition, data augmentation could also increase
the generalization capabilities of the model.

In Fig. 4, we examine the effect of our distribution-aware
text image preprocessing and text effect augmentation on
TE141K through a comparative experiment with the model

TABLE 1
A Summary of TE141K

# Style # Glyphs Glyph Types # Training/# Testing # Images

TE141K-E 67 988 52 English Alphabets in 19 Fonts 874/114 59,280
TE141K-C 65 837 775 Chinese Characters, 52 English Alphabets, 10 Arabic Numerals 740/97 54,405
TE141K-S 20 1,024 56 Special Symbols, 968 Letters in Japanese, Russian, etc. 900/124 20,480

Total 152 2,849 2,514/335 141,081

Based on glyph types, TE141K can be split into three subsets, where styles are different in different subsets.

Fig. 3. Distribution-aware data augmentation. (a) Raw text image. (b)
Results of distribution-aware text image preprocessing (the contrast is
enhanced for better visualization). (c)-(e) Results of distribution-aware
text effect augmentation by tinting (b) using random colormaps.
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proposed in Section 4. Without preprocessing and augmen-
tation, the inner flame textures are not synthesized cor-
rectly. As seen in Fig. 4d, our distribution-aware data
augmentation strategy helps the network learn to infer tex-
tures based on their correlated position on the glyph and
synthesize better flame textures.

2.3 Dataset Statistics

In the proposed dataset, there are a wide variety of text
effects. To explore their distribution, we first obtain their
feature maps from the fifth layer of the VGG network [20].
Then, we conduct nonlinear dimensionality reduction by t-
SNE [19] and visualize the distribution of text effects. We
choose VGG features instead of RGB information because
text effects with similar structural characteristics are close to
each other in VGG features. As illustrated in Fig. 5a, text
effects are evenly distributed as a circle, indicating the
diversity and richness of the text effects in our dataset.

Text effects usually consist of multiple fundamental
visual elements, such as textures, stroke outlines and stereo
effects. These factors may vary greatly and make text effect
transfer a challenging task. To better investigate how they
affect the model performance, we quantify these factors and
manually label the text effects with the corresponding fac-
tors. We will introduce the statistics of these factors in this
section and investigate their influence on the model perfor-
mance in Section 5.6.

We consider texture in two categories: foreground and
background. For background texture, based on complexity
level, we classify it into 6 subclasses: Solid Color, Gradient
Color, Easy Texture, Normal Texture, Hard Texture and Com-
plex Texture. Solid Color is the simplest; transfer models only
need to directly copy the original color. Gradient Color is
more complex; the distribution of color is directional. For
the other four subclasses, there are textures on the back-
ground. In Easy Texture, textures are imperceptible to
human eyes. From Normal Texture to Hard Texture and Com-
plex Texture, textures become distinct and irregular. As
shown in Fig. 5b, 36 percent of the background is solid, and
20 percent is of gradient color, which is consistent with the
fact that background is often set to be simple to better
emphasize the foreground glyph. Similarly, we classify fore-
ground into the same 6 subclasses. In contrast to the back-
ground, 30 percent of the foreground has Complex Texture.
This may be because the foreground is the main body of
text effects; therefore, it is often fully decorated to increase
artistic quality.

Stroke outlines and stereo effects are two common ele-
ments used in cartoon and 3D text effects, respectively. Based
on complexity and thickness, we classify strokes into 6 sub-
classes: No Stroke, Thin Stroke, One-Side Stroke, Normal Stroke,
Thick Stroke and Complex Stroke. We observe that the thickness
of many Thin Stroke and Normal Stroke effects is uneven in
direction; therefore, we further divide them into a more spe-
cific class, One-Side Stroke. In TE141K, 59 percent of the text
effects contain strokes. Stereo effects are usually a combina-
tion of multiple special effects, such as emboss and illumina-
tion effects. In addition, illumination effects can be further
classified into lighting and shadow. Similarly, we classify ste-
reo effects into 6 subclasses: No Emboss, Emboss, No Illumina-
tion, Lighting, Shadow, and Complex Illumination, where
Complex Illumination is a combination ofmore than two illumi-
nation effects. In TE141K, 48 percent of the text effects contain
embossing, and 43 percent contain illumination effects.

Fig. 4. A comparison of results with and without our distribution-aware
data preprocessing and augmentation.

Fig. 5. Statistics of TE141K. (a) Visualized text effect distribution in TE141K by t-SNE [19] based on their VGG features [20]. Perceptually similar
text effects are placed close to each other. The even distribution indicates the diversity and richness of our dataset. (b) Distribution of different
background, foreground, stroke, and stereo effects subclasses of our dataset. Representative images are shown at the top. The first row contains
schematics where red is used to represent specific text effect subclasses. The second row contains representative samples from TE141K.
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2.4 Comparison With Existing Datasets

Datasets play an important role in the development of neu-
ral networks. To the best of our knowledge, the dataset pro-
vided in the work on MC-GAN [17] is the only text effect
dataset in the literature. To train MC-GAN, the authors col-
lected 35 different kinds of text effects from the Internet. For
each style, only an extremely limited set of 26 images of cap-
ital letters with a small size of 64� 64 are rendered, forming
a total of 910 style images, which cannot support training a
network that is robust enough to produce high-resolution
images of arbitrary glyphs. Therefore, MC-GAN can only
handle 26 capital letters with a low resolution. In contrast,
our TE141K contains 152 different kinds of text effects. For
each style, at least 837 glyphs are rendered, adding up to
141,081 image pairs in total. In addition, the image size
reaches 320� 320. The proposed dataset exceeds that of [17]
in terms of both quantity and diversity, supporting transfer
models to render exquisite text effects on various glyphs.

2.5 Text Effect Transfer Tasks

On TE141K, we design three text effects transfer tasks
according to the amount of information provided to transfer
models, which will be benchmarked in Section 5:

� General Text Effect Transfer. In this task, text styles in
the training and testing phases are the same. Bench-
marking is conducted with all three dataset subsets.
During testing, the models are provided with an
input example text effect image, its glyph counter-
part and the target glyph. This task is relatively easy,
since models can become familiar with text effects
through a large amount of training data. The chal-
lenge lies in transferring multiple styles in one model
and generalizing to unseen glyphs.

� SupervisedOne-Reference Text Effect Transfer. In this task,
text effects in the training and testing phases are differ-
ent. For data-driven models, only the training sets of
TE141K-E and TE141K-C are provided, and bench-
marking is conducted on the testing set of TE141K-S.
This task is more difficult, since models have to learn
new text effectswith only one example pair.

� UnsupervisedOne-Reference Text Effect Transfer.This task
is similar to supervised one-reference text effect trans-
fer except that during testing, the glyph image of the
example text effect image is not provided. This task is
the most difficult, since transfer models have to distin-
guish the foreground and background by themselves.

3 BENCHMARKING EXISTING STYLE

TRANSFER MODELS

In this section, we briefly introduce existing representative
style transfer models, which will be benchmarked on the
proposed TE141K dataset in Section 5. These models can be
categorized based on their style representations, i.e., global
statistics, local patches and learned features. The choice of
style representation can largely affect the characteristics of
the model in terms of flexibility and efficiency. To give an
intuitive comparison, we summarize the models and their
characteristics in Table 2.

Global Models. Global models represent image styles as
global statistics of image features and transfer styles bymatch-
ing the global feature distributions between the style image
and the generated image. The advantage of explicitly defined
style representation is that any input style can be modelled
and transferred without requiring a large paired dataset,
which is suitable for the task of unsupervised one-reference
transfer.

TABLE 2
Summary of Benchmarking Representative Style Transfer Models and the Proposed TET-GAN, Showing the Model Type, Model

Names, Number of Style Supported per Model (# Style), Support for Supervised One-Reference (SOR) or Unsupervised
One-Reference (UOR) Style Transfer, Availability of Feed-Forward Fast Style Transfer, Target Type (General

Image Style or Text Effect Transfer), Usage of Deep Models and the Style Representation

Type Model
Flexibility Efficiency Model Design

# Style SOR/UOR Feed-Forward Type Deep Style Representation

Global
NST [1] 1 UOR � general @ Grammatrix of deep features
AdaIN [3] 1 UOR @ general @ mean and variance of deep features
WCT [5] 1 UOR @ general @ mean and covariance of deep features

Local

Analogy [21] 1 SOR � general � image patches
Quilting [22] 1 UOR � general � image patches
CNNMRF [7] 1 UOR � general @ feature patches
Doodles [23] 1 SOR � general @ feature patches
T-Effect [9] 1 SOR � text � image patches
UT-Effect [24] 1 UOR � text � image patches

GAN-based

Pix2pix [10] 1/N* � @ general @ learned features
BicycleGAN [25] 1/N* � @ general @ learned features
StarGAN [12] N � @ general @ learned features
MC-GAN [17] 1 � @ text @ learned features

TET-GAN (ours) N � @ text @ disentangled content and style features
TET-GAN+ (ours) 1 SOR/UOR @ text @ disentangled content and style features

* Pix2pix and BicycleGAN were originally designed to support only one style per model. In our experiment, we add an extra conditional text-style pair to their
original input, which enables them to handle multiple styles in one model. Note: Compared to TET-GAN, TET-GAN+ additionally makes use of the proposed
one-reference finetuning strategy for style extension.

YANG ETAL.: TE141K: ARTISTIC TEXT BENCHMARK FOR TEXT EFFECT TRANSFER 3713

Authorized licensed use limited to: Peking University. Downloaded on September 06,2021 at 02:05:39 UTC from IEEE Xplore.  Restrictions apply. 



� Neural Style Transfer (NST): The trend of parametric
deep-based style transfer began with the pioneering
work of neural style transfer [1]. In NST, Gatys et al.
formulated image styles as the covariance of deep fea-
tures in the form of a Grammatrix [6] and transferred
style by matching high-level representations of the
content image and the Gram matrices; this technique
demonstrates the remarkable representative power
of convolutional neural networks (CNN) to model
style. The main drawback of NST is its computation-
ally expensive optimization procedure. Follow-up
work [26], [27], [28], [29] has been proposed to speed
up NST by training a feed-forward network to mini-
mize the loss of NST. However, efficiency is achieved
at the expense of flexibility and quality. Thus, we
select NST as our benchmarking global model.

� Arbitrary Style Transfer (AdaIN): AdaIN [3] presents a
feature transformation framework, where the style is
represented by the mean and variance of deep fea-
tures. By aligning the statistics of the content features
with those of the style features via adaptive instance
normalization (AdaIN), AdaIN allows for fast arbi-
trary style transfer, achieving flexibility and effi-
ciency simultaneously.

� Universal Style Transfer (WCT):WCT [5] follows the fea-
ture transformation framework and represents style as
the covariance of deep features, which can be adjusted
by whitening/coloring transforms (WCT). Compared
to the variance inAdaIN [3], covariance can better cap-
ture high-level representations of the style.

Local Models. Local models represent styles as local
patches and transfer styles by rearranging style patches to fit
the structure of the content image. Similar to global models,
localmodels are capable of extracting style from only a single
style image, and are therefore suitable for the task of one-
reference transfer. Compared to global models, local patches
better depict style details. However, matching patches can
be time-consuming.

� Image Analogy (Analogy): Hertzmann et al. first presents
a supervised framework called image analogy [21],
which aims to learn the transformation between an
unstylized source image and the corresponding styl-
ized image. Style transfer is realized by applying the
learned transformation to the target image. In [21], the
transformation is realized by replacing unstylized
image patcheswith the corresponding stylized ones.

� Image Quilting (Quilting): Image quilting [22] rear-
ranges image patches from the style image according
to the intensity or gradient of the content image,
which can transfer style in an unsupervised manner.

� CNNMRF: CNNMRF [7] combines CNN with an
MRF regularizer and models image style by local
patches of deep features; it is suitable for fine struc-
ture preservation and semantic matching. However,
it fails when the content and style images have strong
semantic differences due to patchmismatches.

� Neural Doodles (Doodle): Neural doodles [23] introduce
a supervised version of CNNMRF [7] by incorporating
the semantic map of the style image as guidance,
which alleviates the problem of patchmismatches.

� Text Effect Transfer (T-Effect): Yang et al. proposed the
first text effect transfer method, named T-Effect [9].
The authors modelled the text style by both the
appearance of the patches and their correlated posi-
tions on the glyph, which achieved spatial consis-
tency in text style.

� Unsupervised Text Effect Transfer (UT-Effect): UT-
Effect [24] is an unsupervised version of T-Effect [9],
which generates new text effects from texture images
rather than given text effects. It further exploits the
saliency of the textures to enhance the legibility of
the rendered text.

GAN-Based Models. GAN-based models are tasked to
map between two or more domains; during this process, the
style representation is implicitly learned from the data. This
task-specific style representation has the advantage of pro-
ducing vivid results but needs a large dataset for training
and is usually hard to extend to new styles.

� Pix2pix-cGAN (Pix2pix): Pix2pix [10] presents a gen-
eral-purpose framework built upon U-Net [30] and
PatchGAN [10] for the task of image-to-image transla-
tion and has shown high performance in many appli-
cations, such as style transfer, colorization, semantic
segmentation and daytime hallucination. Despite its
high performance, Pix2pix [10] is designed for two
domains and thus has limited flexibility in handling
multiple styles.

� BicycleGAN: BicycleGAN [25] tackles the problem of
generating diverse outputs by encouraging bijective
consistency between the output and learned latent
features. However, it is ineffective in multistyle
transfer.

� StarGAN: StarGAN [12] utilizes additional one-hot
vectors as input to specify the target domain so that
the network can learn a mapping between multiple
domains, which is more flexible.

� Multi-Content GAN (MC-GAN): Azadi et al. [17] pre-
sented an MC-GAN for the stylization of capital let-
ters, which combines font transfer and text effect
transfer using two successive subnetworks. A leave-
one-out approach is introduced for few-reference
style transfer (it takes about 6 example images as
input, as reported in [17]), making the model more
flexible. However, MC-GAN is designed to handle
only 26 capital letters with a small image resolution
of 64� 64, which highly limits its uses.

4 TET-GAN FOR TEXT EFFECT TRANSFER

To construct a baseline model for TE141K, we propose a
deep-based approach named TET-GAN to disentangle and
recombine the content and style features of text effect
images so that it can simultaneously handle multiple styles
in TE141K. We further propose a one-reference finetuning
strategy that flexibly extends TET-GAN to new styles.

4.1 Network Architecture and Loss Function

Our goal is to learn a two-way mapping between two
domainsX andY, which represent a collection of text images
and text effect images, respectively. As shown in Fig. 6, TET-
GAN consists of two content encoders fEX ; Ec

Yg, a style
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encoder fEs
Yg, two domain generators fGX ; GYg and two

domain discriminators fDX ; DYg. EX and Ec
Y map text

images and text effect images, respectively, onto a shared
content feature space, while Es

Y maps text effect images onto
a style feature space. GX generates text images from the
encoded content features. GY generates text effect images
conditioned on both the encoded content and style features.
Based on the assumption that domainsX and Y share a com-
mon content feature space, we share the weights between
the last few layers ofEX andEc

Y as well as the first few layers
of GX and GY . Discriminators are trained to distinguish the
generated images from the real ones.

TET-GAN is trained on three tasks: Glyph Autoencoder
GX � EX : X ! X for learning content feature encoding,
Destylization GX � Ec

Y : Y ! X for learning content feature
disentanglement from text effect images, and Stylization
GY � ðEX ; Es

YÞ : X � Y ! Y for learning style feature disen-
tanglement and combination with content features. There-
fore, our objective is to solve the min-max problem

min
E;G

max
D

Lgly þ Ldesty þ Lsty; (1)

where Lgly, Ldesty and Lsty are losses related to the glyph
autoencoder, destylization, and stylization, respectively.

Glyph Autoencoder. First, the encoded content feature is
required to preserve the core information of the glyph.
Thus, we impose an autoencoder L1 loss to force the content
feature to completely reconstruct the input text image

Lgly ¼ �glyEx½kGXðEXðxÞÞ � xk1�: (2)

Destylization. For destylization, we sample from the train-
ing set a text-style pair ðx; yÞ. We would like to map x and y
onto a shared content feature space, where the feature can
be used to reconstruct x, leading to the L1 loss

Ldpix ¼ Ex;y½kGXðEc
YðyÞÞ � xk1�: (3)

Furthermore, we would like Ec
Y to approach the ideal con-

tent feature extracted from x. To enforce this constraint, we
formulate the feature loss as

Ldfeat ¼ Ex;y½kSXðEc
YðyÞÞ � zk1�; (4)

where SX represents the sharing layers of GX and z ¼
SXðEXðxÞÞ. Our feature loss guides the content encoder Ec

Y

to remove the style elements from the text effect image, pre-
serving only the core information of the glyph.

Finally, we impose conditional adversarial loss to imp-
rove the quality of the generated results. DX learns to deter-
mine the authenticity of the input text image and whether it
matches the given text effect image. At the same time, GX
and Ec

Y learn to confuseDX

Ldadv ¼ Ex;y½logDXðx; yÞ�
� Ey½log ð1�DXðGXðEc

YðyÞÞ; yÞÞ�:
(5)

The total loss for destylization takes the following form:

Ldesty ¼ �dpixLdpix þ �dfeatLdfeat þ �dadvLdadv: (6)

Stylization. For the task of stylization, we sample from the
training set a text-style pair ðx; yÞ and a text effect image y0

that shares the same style with y but has a different glyph.
We first extract the content feature from x and the style fea-
ture from y0, which are then concatenated and fed into GY
to generate a text effect image to approximate the ground-
truth y in an L1 sense

Lspix ¼ Ex;y;y0 ½kGYðEXðxÞ; Es
Yðy0ÞÞ � yk1�; (7)

and confuseDY with conditional adversarial loss

Lsadv ¼ Ex;y;y0 ½logDYðx; y; y0Þ�
� Ex;y0 ½log ð1�DYðx;GYðEXðxÞ; Es

Yðy0ÞÞ; y0ÞÞ�:
(8)

Our final loss for stylization is

Lsty ¼ �spixLspix þ �sadvLsadv: (9)

4.2 One-Reference Text Effect Transfer

As introduced in Section 3, GAN-based methods are by
nature heavily dependent on datasets and usually require
thousands of training images, which greatly limits their
applicability. To build a baseline that supports personalized
style transfer, as the global and local methods do, we pro-
pose an one-reference finetuning strategy for style exten-
sion, where only one example style image is required.

One-Reference Supervised Learning. For an unseen style in
Fig. 7a, as shown in the top row of Fig. 7c, TET-GAN trained
on TE141K-C fails to synthesize texture details. To solve this

Fig. 6. The TET-GAN architecture. (a) An overview of the TET-GAN architecture. Our network is trained via three objectives: an autoencoder, destyli-
zation and stylization. (b) A glyph autoencoder to learn content features. (c) Destylization by disentangling content features from text effect images.
(d) Stylization by combining content and style features.

YANG ETAL.: TE141K: ARTISTIC TEXT BENCHMARK FOR TEXT EFFECT TRANSFER 3715

Authorized licensed use limited to: Peking University. Downloaded on September 06,2021 at 02:05:39 UTC from IEEE Xplore.  Restrictions apply. 



problem, inspired by self-supervised adversarial train-
ing [31], we propose a simple yet efficient “self-stylization”
training scheme. As shown in Fig. 7b, we randomly crop the
images to obtain many text effect patches that have the same
style but differ in the pixel domain. In other words, x, y, and
y0 in Eqs. (1)-(9) are patches cropped from the given image
pair. They constitute a training set to finetune TET-GAN so
that it can learn to reconstruct vivid textures, as shown in the
bottom row of Fig. 7c. Note that our model finetuned over a
single image can generalize well to other very different
glyphs. Compared to the texture synthesis task [31], our one-
reference style transfer task is more challenging, which
requires generalization to glyphs. Thus, our training scheme
further requires the model to be pretrained on a large
amount of supervised data to learn the domain knowledge
of the glyphs. As we will show later in Fig. 14, such domain
knowledge learnt from TE141K plays an important role in
improving the one-reference text effect transfer.

One-Reference Unsupervised Learning. For an unseen style y
without a provided text image x, it is intuitive to exploit our
destylization submodule to generate x from y and transform
this one-reference unsupervised problem to a supervised
one. In other words, ~x ¼ GXðEc

YðyÞÞ is used as an auxiliary x
during finetuning. Considering that the accuracy of the con-
tent features extracted from ~x cannot be guaranteed, a style
reconstruction loss is employed to further constrain the con-
tent features to help reconstruct y

Lsrec ¼ �srecEy½kGYðEc
YðyÞ; Es

YðyÞÞ � yk1�: (10)

Our objective for unsupervised learning takes the form

min
E;G

max
D

Lgly þ Ldesty þLsty þ Lsrec: (11)

The model of TET-GAN combining the one-reference
finetuning strategy is named TET-GAN+.

4.3 Semi-Supervised Text Effects Transfer

With the help of paired data provided by the proposed
TE141K, we can explore the potential of TET-GAN in

semisupervised learning, where the model is givensufficient
but unpaired data for style extension. The main challenge is
to establish an effective mapping between the style data and
the glyph data. Inspired by the adversarial augmentation
proposed by [32], we propose a hybrid supervised and unsu-
pervised learning framework of TET-GAN, where two aug-
mentation discriminators Daug

X and Daug
Y are introduced to

receive unlabeled data. Specifically, Daug
X is tasked to only

judge the authenticity of the input text image without the
need to determine whether it matches the given text effect
image, and it uses the following objective function:

Ldaug ¼ Ex½logDaug
X ðxÞ�

� Ey½log ð1�Daug
X ðGXðEc

YðyÞÞÞÞ�:
(12)

The objective function ofDaug
Y is similarly defined

Lsaug ¼ Ey;y0 ½logDaug
Y ðy; y0Þ�

� Ex;y0 ½log ð1�Daug
Y ðGYðEXðxÞ; Es

Yðy0ÞÞ; y0ÞÞ�: (13)

The advantage is that the supervised data serve as an anchor
to force the model to generate outputs consistent with the
inputs, while the unsupervised data can teach the model to
deal with a wider variety of glyph and style inputs.

4.4 Joint Font Style and Text Effect Transfer

As we will show later, TET-GAN has a good generalizability
across fonts and is capable of transferring the text effects on a
reference image to other glyphs in different font styles. How-
ever, some text effects are designed specifically for certain
fonts. In Fig. 8, we show a case where the neon style suits a
serif font (regular script) but not a sans-serif font (Microsoft
Yahei). Thus, it is a good option to match the font styles. In
this section, we explore the potential for TET-GAN in trans-
ferring the font style itself. Specifically, we choose an anchor
fontF 0 (in this paper, we useMicrosoft Yahei) as an unstyled
font. All other fonts are regarded as stylized versions. During
training, fx; y; y0g represents one character in the anchor font
F 0, the same character in another font F 1, and another char-
acter in the other font F 1. All other training processes are the
same as for learning text effects.

Then, two TET-GANs trained on font styles and text
effects can constitute a uniform framework, as illustrated in
Fig. 8. For an input style image,we first remove its text effects
and obtain its raw text image, which is used as the reference
font to adjust the input text. After that, we can use the origi-
nal style image to render the text effects onto the font transfer

Fig. 7. One-reference text effects transfer. (a) New, user-specified text
effects. (b) Random crop of the style image to generate image pairs for
training. (c) Top row: Stylization result on an unseen style. Bottom row:
Stylization result after one-reference finetuning. The model finetuned
over (a) is able to transfer text effects onto other unseen characters.

Fig. 8. Hybrid font style and text effect transfer framework. Two TET-
GANs trained on the font dataset and text effects dataset constitute a
uniform framework to transfer both font style and text effects.
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result. The final output shares both the font style and text
effects with the input style.

5 EXPERIMENTAL RESULTS

In this section, 15 state-of-the-art style transfer models,
including the proposed TET-GAN and TET-GAN+, are
tested on the proposed TE141K. The models are summa-
rized in Table 2. Through the experimental results, we pro-
vide a comprehensive benchmark for text effect transfer,
analyze the performance-influencing factors of TE141K, and
demonstrate the superiority of the proposed models.

5.1 Experimental Settings

Implementation Details. For state-of-the-art models, we use
their public codes and default parameters. Three data-driven
methods, Pix2pix [10], BicycleGAN [25], and StarGAN [12],
are trained on the proposed dataset with our data prepro-
cessing and their own data augmentation. To allow Pix2pix
and BicycleGAN to handle multiple styles, we change their
inputs from a single text image to a concatenation of three

images: the example text effect image, its glyph counterpart
and the target glyph. The architecture details of TET-GAN
are provided in the supplementary material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2020.2983697.

Evaluation Metrics. Since there is currently no evaluation
metric specially designed for text effects, we choose to use
two traditional metrics, the peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM), which are widely
applied for image quality assessment, and two neural-
network-based metrics, perceptual loss and style loss, which
are commonly used in style transfer.

The PSNR is an approximation to human perception. Let
X be the image predicted by a model, and Y be the ground-
truth image. The PSNR is defined as

PSNRðX;Y Þ ¼ 20 � log10 255
jjX�Y jj22

� �
: (14)

Compared with the PSNR, SSIM is more sensitive to
changes in structural information. Given mx and my, the
average of X and Y , respectively; s2

x and s2
y, the variance of

X and Y , respectively; sxy, the covariance of X and Y ; and
c1 ¼ 6:5025 and c2 ¼ 58:5225, two variables to stabilize divi-
sion with a weak denominator, SSIM is defined as

SSIMðX;Y Þ ¼ ð2mxmy þ c1Þð2sxy þ c2Þ
ðm2

x þ m2
y þ c1Þðs2x þ s2y þ c2Þ

: (15)

In neural style transfer [1], perceptual loss and style loss
measure the semantic similarity and style similarity of two
images, respectively. Let F l be the feature map of the lth
layer of a pretrained VGG-19 network, with Gram matrix
GðFÞ ¼ FF>; then, perceptual loss and style loss are

PerceptualðX;Y Þ ¼
X
l

jjF lðXÞ � F lðY Þjj22;

StyleðX;Y Þ ¼
X
l

jjGðF lðXÞÞ � GðF lðY ÞÞjj22:
(16)

TABLE 3
Performance Benchmarking on the Task of General Text Effect

Transfer With PSNR, SSIM, Perceptual Loss, Style Loss,
and the Average Score of the User Study

Model PSNR SSIM Perceptual Style User

AdaIN [3] 13.939 0.612 1.6147 0.0038 1.89
WCT [5] 14.802 0.619 1.8626 0.0036 1.63
Doodles [23] 18.172 0.666 1.5763 0.0031 2.98
T-Effect [9] 21.402 0.793 1.0918 0.0020 4.19
Pix2pix [10] 20.518 0.798 1.3940 0.0032 3.08
BicycleGAN [25] 20.950 0.803 1.5080 0.0033 2.63
StarGAN [12] 14.977 0.612 1.9144 0.0045 2.09
TET-GAN (ours) 27.626 0.900 0.8250 0.0014 4.62

The best score in each column is marked in bold, and the second best score is
underlined.

Fig. 9. Comparison with state-of-the-art methods on general text effect transfer. (a) Input example text effects with the target text in the lower-left
corner. (b) AdaIN [3]. (c) WCT [5]. (d) Doodles [23]. (e) T-Effect [9]. (f) Pix2pix [10]. (g) BicycleGAN [25]. (h) StarGAN [12]. (i) TET-GAN.
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To measure the results from both local and global perspec-
tives, we choose five layers relu1_1, relu2_1, relu3_1,
relu4_1 and relu5_1.

Furthermore, a user study was conducted in which 20
observers were asked to score the comprehensive transfer
performance with 1 to 5 points (where 5 is the best). For each
observer, we randomly selected 5 input pairs and asked
them to score the corresponding results of all models.
Finally, we collected 2,000 scores and calculated the average
score for eachmodel on each task.

5.2 Benchmarking on General Text Effect Transfer

We first benchmark models on general text effect transfer,
where text styles in the training and testing phases are the
same. As shown in Table 3, TET-GAN performs the best on
all metrics. Representative results are shown in Fig. 9.

Two representative globalmodels, AdaIN [3] andWCT [5],
fail to perform well in both quantity and quality. AdaIN fails
to reconstruct details and has color deviations, while WCT
creates wavy artifacts and mingles the foreground and back-
ground. This may be because AdaIN and WCT are designed
to model the style as global statistics, and this representation
is not suitable for text effect transfer.

We select two representative local models, Doodles [23]
and T-Effect [9]. Doodles fails to preserve global structure
and suffers from artifacts. In Table 3, T-Effect performs sec-
ond best on four metrics. However, since the T-Effect pro-
cesses patches in the pixel domain, it causes obvious color
and structure discontinuity. In addition, when the edge of
the input glyph differs greatly from the target glyph, T-
Effect fails to adapt well to the new glyph.

Regarding GAN-based methods, both Pix2pix [10] and
BicycleGAN [25] achieve a PSNR of over 20 and an SSIM of
over 0.79. However, they cannot eliminate the original
input, leaving some ghosting artifacts. StarGAN [12] learns
some color mappings but fails to synthesize texture details
and suffers from distinct checkerboard artifacts, which also
leads to low quantitative performance. In summary, GAN-
based methods can largely realize text effect transfer; how-
ever, the visual effect is not satisfactory, which may be due
to the instability of GAN and limited network capability.

By comparison, our network learns valid glyph features
and style features, thus precisely transferring text effects
while preserving the glyph well.

5.3 Benchmarking on Supervised One-Reference
Text Effect Transfer

In the task of supervised one-reference text effect transfer,
only one observed example pair is provided. In addition to
existing methods, we select Pix2pix [10], which has the best
user score among the GAN-based models in the last task,
and apply our one-reference learning strategy proposed in
Section 4.2 to it, making Pix2pix able to process unseen text
effects. This variant is named Pix2pix+.

As shown in Table 4, the proposed TET-GAN+ achieves
the best results on PSNR, SSIM, content loss and the user
study, and performs second best on style loss. T-Effect [9]
performs slightly better than TET-GAN+ on style loss. This
may be because style loss mainly focuses on local similarity,
and the T-effect can easily achieve good local similarity by
directly copying and fusing patches from the source image.
It can be observed in Fig. 10 that the T-Effect is less able to
preserve shape, texture regularity and color continuity. In
terms of efficiency, the released T-Effect implemented in
MATLAB requires approximately 150 s per image with an
Intel Xeon E5-1620 CPU (no GPU version available). In com-
parison, our feed-forward method only takes approximately
0.33 s per image with an Intel Core i7-6850K CPU and 10 ms
per image with a GeForce GTX 1080 GPU after a three-min-
ute finetuning.

The other three methods are not as good as TET-GAN+ in
terms of either quantitative or qualitative performance. Two
local methods face problems: Analogy [21] cannot well pre-
serve the shape of the glyph, while Doodles [23] causes arti-
facts and distorts textures. Although, taking advantage of
the proposed finetuning strategy, Pix2pix+ [10] can transfer

TABLE 4
Performance Benchmarking on the Task of Supervised

One-Reference Text Effect Transfer With PSNR,
SSIM, Perceptual Loss, Style Loss, and the

Average Score of the User Study

Model PSNR SSIM Perceptual Style User

Analogy [21] 14.639 0.581 2.1202 0.0034 1.59
Doodles [23] 17.653 0.636 1.6907 0.0028 3.20
T-Effect [9] 18.654 0.712 1.4023 0.0022 3.96
Pix2pix+ [10] 16.656 0.660 1.7226 0.0037 2.30
TET-GAN+ (ours) 20.192 0.767 1.4017 0.0026 4.26

The best score in each column is marked in bold, and the second best score is
underlined.

Fig. 10. Comparison with other methods on one-reference supervised
text effect transfer. (a) Input example text effects with the target text in
the lower-left corner. (b) Analogy [21]. (c) Doodles [23]. (d) T-Effect [9].
(e) Pix2pix+ [10]. (f) TET-GAN+.

TABLE 5
Performance Benchmarking on the Task of Unsupervised
One-Reference Text Effect Transfer With PSNR, SSIM,

Perceptual Loss, Style Loss, and the Average
Score of the User Study

Model PSNR SSIM Perceptual Style User

NST [1] 11.413 0.255 2.5705 0.0045 1.56
AdaIN [3] 13.443 0.579 1.7342 0.0033 1.92
WCT [5] 13.911 0.542 2.0934 0.0033 1.93
Quilting [22] 11.045 0.354 2.6733 0.0058 1.41
CNNMRF [7] 09.309 0.337 1.8427 0.0042 1.79
UT-Effect [24] 14.877 0.609 1.7551 0.0028 2.12
TET-GAN+ (ours) 18.724 0.721 1.4933 0.0027 3.90

The best score in each column is marked in bold, and the second best score is
underlined.
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basal colors to the target glyph, it suffers from severe detail
loss. Compared with Pix2pix+, TET-GAN+ can adapt to and
reconstruct new textures due to feature disentanglement.

5.4 Benchmarking on Unsupervised One-Reference
Text Effect Transfer

The task of unsupervised one-reference text effect transfer is
challenging; only one observed example is provided for the
models. The advantages of our approach are more pro-
nounced. As shown in Table 5, TET-GAN+ achieves the
best result on all five metrics. Representative results are
illustrated in Fig. 11.

Three global methods, NST [1], AdaIN [3] and WCT [5],
all fail to produce satisfactory quantity and quality results.
NST cannot correctly find the correspondence between the
texture and glyph, leading to severe shape distortion and
interwoven textures. AdaIN and WCT encounter the same
problem as in Section 5.2. Concerning local methods,
CNNMRF [7] fails to adapt text effect features to the target
glyph. Quilting [22] andUT-Effect [24] distort glyphs. Taking
full advantage of destylization, TET-GAN+ can distinguish

the foreground and background well, and therefore can suc-
cessfully reconstruct the global structure.

Compared with Table 4, we find that the quantitative
performance in Table 5 is much worse, which indicates that
the unsupervised task is more difficult than the supervised
one. This is obvious since the models are provided with
much less information. However, the proposed TET-GAN+
still achieves satisfactory results, which demonstrates that
the unsupervised task is solvable, and the proposed unsu-
pervised one-reference training scheme is feasible.

5.5 Comparision With MC-GAN

MC-GAN [17] is a few-reference method and can only han-
dle 26 capital letters with a small image resolution of 64 �
64. Moreover, MC-GAN only supports text effects with
white backgrounds. Therefore, to compare MC-GAN, we
need to build a new testing set.

We first collect 10 styles from FlamingText,2 the same
website used by MC-GAN. Note that FlamingText renders
text effects in an automatic way, which is similar to our data
collection method using PhotoShop batch tools. To fairly
examine the ability of a model to handle unexpected text
effects, we collect 10more challenging data fromHandmade-
font,3 an online shop of professionally designed handmade
or 3D text effects. Finally, we collect 20 styles with 5 images
for each style, summing up to 100 text effect images, and
manually label the corresponding glyph for each style image.
This testing set is named TE141K-F (‘F’ for few-reference).

Fig. 12 shows the comparison results where four charac-
ters are provided for few-reference learning and one for test-
ing. We directly feed MC-GANwith the ground-truth glyph
images to make a fair comparison with TET-GAN. As can be
seen, the text effects in TE141K-F have quite challenging
structures and textures, which are not reconstructed by MC-
GAN. In Fig. 12d, TET-GAN+ generates high-quality results
with rich textures, and synthesizes complex but plausible
structures. However, compared to the ground-truth, the

Fig. 11. Comparison with other methods on one-reference unsupervised text effect transfer. (a) Input example text effects with the target text in the
lower-left corner. (b) NST [1]. (c) AdaIN [3]. (d) WCT [5]. (e) Quilting [22]. (f) CNNMRF [7]. (g) UT-Effect [24]. (h) TET-GAN+.

Fig. 12. Comparison with MC-GAN [17] on TE141K-F. (a) Input style
images for training. (b) Target glyph images. (c) Results of MC-GAN.
(d) Results of TET-GAN+. (e) Ground-truth.

2. http://www6.flamingtext.com/All-Logos
3. https://handmadefont.com/
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details are still slightly distorted and mixed in the results of
TET-GAN+. This indicates substantial room for improve-
ment in terms of few-reference learning. Full results on
TE141K-F are provided in the supplementarymaterial, avail-
able online.

5.6 Analysis of TE141K

We further analyze the performance-influencing factors of
TE141K with the benchmarking results. To quantify the dif-
ficulty of transferring a certain text style, we use its average
user score value over eight transfer models benchmarked
on the task of general text effect transfer to represent its
transferring difficulty.

To explore the factors that determine the difficulty of
transferring text effects, we first use one-hot encoding to
represent whether text effects contain the 24 subclasses
introduced in Section 2.3. Then, we adopt linear regression
to fit the average user score. The Pearson correlation coeffi-
cient of this regression is 0.742. The linear regression
weights can indicate whether a subclass plays an important
role in determining the user scores. The three largest posi-
tive weight values are One-Side Stroke (0.47798), Background
Hard Texture (0.39513), and Foreground Normal Texture
(0.37166). The reason for this is twofold. First, these distinct
visual elements are easily perceived by human eyes to influ-
ence user decisions. Second, these visual elements are
mostly anisotropic and irregular, which are difficult for
transfer models to characterize and generate. Additionally,
Normal Stroke (-1.34573) has the lowest negative weight val-
ues, while the values of Thick Stroke (-0.73353) and Thin
Stroke (-0.60621) are also negative. This is because with the
help of glyph shape and data preprocessing to provide dis-
tance information, strokes become easy to model and recon-
struct. In conclusion, generating irregular textures or shapes
around glyphs constitutes the major challenge of text effect
transfer. This suggests focusing on modeling irregular tex-
tures or shapes in subsequent studies.

5.7 Performance Analysis of TET-GAN

In addition to model benchmarking, we conducted experi-
ments to further analyze the performance of TET-GAN.

Ablation Study. In Fig. 13, we study the effect of the recon-
struction loss (Eq. (4)) and the feature loss (Eq. (2)). Without

these two losses, even the color palette of the example style
is not correctly transferred. In Fig. 13c, the glyph is not fully
disentangled from the style, leading to bleeding artifacts.
The satisfying results in Fig. 13d verify that our feature loss
effectively guides TET-GAN to extract valid content repre-
sentations to synthesize clean text effects. For one-reference
text effect transfer, as shown in Fig. 14, if trained from
scratch (namely, the self-supervised adversarial training
scheme [31]), the performance of our network drops dra-
matically, verifying that pretraining on our dataset success-
fully teaches our network the domain knowledge of text
effect synthesis.

Disentanglement of Style and Content Features. TET-GAN
disentangles content and style to enable multi-style transfer
and removal. To measure the entanglement of the two enti-
ties, we design experiments to analyze the representation
capabilities of the extracted features. Based on the intuition
that a meaningful style (content) feature contains enough
information to represent its style (content) but little informa-
tion to represent its content (style), we perform classification
over both features. Specifically, we extract the content fea-
ture and style feature of a style image as the output features
of the sharing layers of GX and GY , respectively. We addi-
tionally train an autoencoder over style images to extract
the feature that preserves both the glyph and style informa-
tion, which we denote as the AE feature for comparison.
Then, we train a five-layer classification network to predict
the content and style label based on the input content fea-
ture, style feature and AE feature. Another six-layer classifi-
cation network fed with the original style image is also

Fig. 14. Effect of pretraining for one-reference text effect transfer.
(a), (d): Input. (b), (e): Our results. (c), (f): Results without pretraining.

Fig. 13. Effect of autoencoder loss and feature loss. (a) Input. (b) Model
without Lgly and Ldfeat. (c) Model without Ldfeat. (d) Full model.

Fig. 15. Analysis of the disentangled style feature and content feature in
text effect classification and glyph classification.
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trained as a reference. We elaborate the network architec-
ture to make the two classification networks have similar
numbers of parameters. The prediction accuracies during
training over TE141K-C are plotted in Fig. 15.

The AE feature is comparable to the image input. Com-
pared with other inputs, the content feature extracted by
TET-GAN contains highly representative and discrimina-
tive glyph information but very little style information. The
same is true for the style feature, verifying the disentangle-
ment of content and style. This is because, for the content
feature, Ec

Y is tasked with approaching the ideal glyph fea-
ture via our feature loss (Eq. (4)). For the style feature, Es

Y
aims to extract style features that apply to arbitrary glyphs
in content images, and is thus driven to eliminate the irrele-
vant glyph information from the style image. In addition to
the drive of the loss functions, another reason may be the
good nature of our collected dataset, that is, high quality
paired data with style labels.

Generalizability Across Font. To study the generalizability
of TET-GAN across font styles, we select several text images
in quite different fonts, as shown in Fig. 16. Many of them
are handwriting styles with irregular strokes. TET-GAN

successfully renders plausible text effects on these challeng-
ing strokes, verifying its capability of transferring the text
effects on a reference image to other glyphs in different font
styles.

Joint Font Style and Text Effect Transfer. In Fig. 17, we
study the performance of TET-GAN in joint font style and
text effect transfer. We prepare a font dataset with 775 Chi-
nese characters in 30 different font styles and train TET-
GAN with the first 740 characters. The style transfer results
over the remaining unseen characters are shown in Fig. 17a.
It can be seen that the font style and text effects are effec-
tively transferred. In Fig. 17b, we use English letters in
TE141K-E as a reference style. Note that both the glyph and
the font styles are unseen during the training of our font
style transfer model. TET-GAN selects the best-matched
font among the 30 training fonts based on the reference
image to render the target text, which achieves satisfactory
style consistency with the input.

Semisupervised Text Effect Transfer. In Fig. 18, we compare
the performance of supervised text transferwith andwithout
adversarial augmentation. We manually divide TE141K-E
into two parts with no overlap in glyphs to generate our
unpaired data. The model trained only on TE141K-C serves
as a baseline to show the performance of our model on
unseen glyphs and styles. Meanwhile, the model trained on
the full TE141K gives an upper bound that we can expect
from unsupervised learning. It can be seen that our semisu-
pervised model learns from unpaired data to better imitate
the target styles. We also observe a clear improvement in the
destylization of English glyphs that is fairly different from
that of the training data in TE141K-C, indicating better glyph
generalization of the model. However, our semisupervised

Fig. 16. Stylization results in different font styles. First row: input text
images. Next rows: input style images and the style transfer results.

Fig. 17. Joint font style and text effect transfer results. (a) First row: input
text images. Second row: input style image and the style transfer results.
(b) First row: input style images. Second row: input text image and the
style transfer results.

Fig. 18. Destylization and stylization results of TET-GAN w/ and w/o
adversarial augmentation. (a): Input example text effects from TE141K-
E with the target text in the lower-left corner. (b)-(g): Destylization and
stylization results by the models trained with supervision on the full
TE141K (full), trained with supervision on TE141K-C and adversarially
augmented with TE141K-E (w/ aug) and trained with only supervision on
TE141K-C (w/o aug), respectively.

Fig. 19. Applications of TET-GAN for style interpolation.
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model fails to handle the challenging text effects in the third
row of Fig. 18, verifying that our dataset is challenging and
there is still much room for improvement in semisupervised
learning.

Style Interpolation. The flexibility of TET-GAN is further
shown by the application of style interpolation. The explicit
style representations enable intelligent style editing. Fig. 19
shows an example of style fusion. We interpolate between
four different style features and decode the integrated fea-
tures back to the image space, obtaining new text effects.

Failure Case and User Interaction. While our approach has
generated appealing results, some limitations still exist. Our
destylization subnetwork is not fool-proof due to the
extreme diversity of the text effects, which may differ
completely from our collected text effects. Fig. 20 shows a
failure case of one-reference unsupervised text effect trans-
fer. Our network fails to recognize the glyph. As a result, in
the stylization result, the text effects in the foreground and
background are reversed. This problem can possibly be
solved by user interaction. Users can simply paint a few
strokes (Fig. 20d) to provide a priori information about the
foreground and the background, which is then fed into the
network as guidance to constrain glyph extraction. Specifi-
cally, let Mf and Mg be the binary mask of foreground and
background (i.e., the red channel and the blue channel in
Fig. 20d) provided by the user, respectively. Then, a guid-
ance loss is added to Eq. (1)

Lguid ¼ Ey½kGXðEc
YðyÞÞ �Mf �Mfk1�

þ Ey½kGXðEc
YðyÞÞ �Mb � 0k1�;

(17)

where � is the elementwise multiplication operator. As
shown in Fig. 20e, under the guidance of Lguid, the glyph is
correctly extracted, and the quality of the style transfer
result (Fig. 20f) is thereby greatly improved.

6 CONCLUSION

In this paper, we introduce a novel text effects dataset with
141K text effect/glyph pairs in total, which consists of 152
professionally designed text effects and 3K different kinds of
glyphs, including English letters, Chinese characters, Japa-
nese kana, and Arabic numerals. Statistics and experimental
results validate the challenges of the proposed dataset. In
addition, we design effective data preprocessing and aug-
mentationmethods that can improve the robustness of trans-
fer models. Moreover, we present a novel TET-GAN for text
effect transfer. We integrate stylization and destylization
into one uniform framework to jointly learn valid content
and style representations of the artistic text. The benchmark-
ing results demonstrate the superiority of TET-GAN in

generating high-quality artistic typography. As a future
direction, one may explore other more sophisticated style
editing methods on the proposed dataset, such as back-
ground replacement, color adjustment and texture attribute
editing. We believe the proposed dataset has the potential to
boost the development of corresponding research areas.
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